(0) Obligation:

The Runtime Complexity (innermost) of the given CpxTRS could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z)
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z)
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z)
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z)
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z)
gr(0, x) → false
gr(s(x), 0) → true
gr(s(x), s(y)) → gr(x, y)
add(0, x) → x
add(s(x), y) → s(add(x, y))
p(0) → 0
p(s(x)) → x

Rewrite Strategy: INNERMOST

(1) TrsToWeightedTrsProof (BOTH BOUNDS(ID, ID) transformation)

Transformed TRS to weighted TRS

(2) Obligation:

The Runtime Complexity (innermost) of the given CpxWeightedTrs could be proven to be BOUNDS(1, n^2).


The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z) [1]
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z) [1]
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z) [1]
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z) [1]
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
add(0, x) → x [1]
add(s(x), y) → s(add(x, y)) [1]
p(0) → 0 [1]
p(s(x)) → x [1]

Rewrite Strategy: INNERMOST

(3) TypeInferenceProof (BOTH BOUNDS(ID, ID) transformation)

Infered types.

(4) Obligation:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z) [1]
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z) [1]
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z) [1]
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z) [1]
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
add(0, x) → x [1]
add(s(x), y) → s(add(x, y)) [1]
p(0) → 0 [1]
p(s(x)) → x [1]

The TRS has the following type information:
cond1 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
gr :: 0:s → 0:s → true:false
0 :: 0:s
add :: 0:s → 0:s → 0:s
p :: 0:s → 0:s
false :: true:false
cond3 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
s :: 0:s → 0:s

Rewrite Strategy: INNERMOST

(5) CompletionProof (UPPER BOUND(ID) transformation)

The transformation into a RNTS is sound, since:

(a) The obligation is a constructor system where every type has a constant constructor,

(b) The following defined symbols do not have to be completely defined, as they can never occur inside other defined symbols:


cond1
cond2
cond3

(c) The following functions are completely defined:

gr
add
p

Due to the following rules being added:
none

And the following fresh constants:

const

(6) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

cond1(true, x, y, z) → cond2(gr(x, 0), x, y, z) [1]
cond2(true, x, y, z) → cond1(gr(add(x, y), z), p(x), y, z) [1]
cond2(false, x, y, z) → cond3(gr(y, 0), x, y, z) [1]
cond3(true, x, y, z) → cond1(gr(add(x, y), z), x, p(y), z) [1]
cond3(false, x, y, z) → cond1(gr(add(x, y), z), x, y, z) [1]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
add(0, x) → x [1]
add(s(x), y) → s(add(x, y)) [1]
p(0) → 0 [1]
p(s(x)) → x [1]

The TRS has the following type information:
cond1 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
gr :: 0:s → 0:s → true:false
0 :: 0:s
add :: 0:s → 0:s → 0:s
p :: 0:s → 0:s
false :: true:false
cond3 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
s :: 0:s → 0:s
const :: cond1:cond2:cond3

Rewrite Strategy: INNERMOST

(7) NarrowingProof (BOTH BOUNDS(ID, ID) transformation)

Narrowed the inner basic terms of all right-hand sides by a single narrowing step.

(8) Obligation:

Runtime Complexity Weighted TRS where critical functions are completely defined. The underlying TRS is:

Runtime Complexity Weighted TRS with Types.
The TRS R consists of the following rules:

cond1(true, 0, y, z) → cond2(false, 0, y, z) [2]
cond1(true, s(x'), y, z) → cond2(true, s(x'), y, z) [2]
cond2(true, 0, y, z) → cond1(gr(y, z), 0, y, z) [3]
cond2(true, s(x''), y, z) → cond1(gr(s(add(x'', y)), z), x'', y, z) [3]
cond2(false, x, 0, z) → cond3(false, x, 0, z) [2]
cond2(false, x, s(x1), z) → cond3(true, x, s(x1), z) [2]
cond3(true, 0, 0, z) → cond1(gr(0, z), 0, 0, z) [3]
cond3(true, 0, s(x3), z) → cond1(gr(s(x3), z), 0, x3, z) [3]
cond3(true, s(x2), 0, z) → cond1(gr(s(add(x2, 0)), z), s(x2), 0, z) [3]
cond3(true, s(x2), s(x4), z) → cond1(gr(s(add(x2, s(x4))), z), s(x2), x4, z) [3]
cond3(false, 0, y, z) → cond1(gr(y, z), 0, y, z) [2]
cond3(false, s(x5), y, z) → cond1(gr(s(add(x5, y)), z), s(x5), y, z) [2]
gr(0, x) → false [1]
gr(s(x), 0) → true [1]
gr(s(x), s(y)) → gr(x, y) [1]
add(0, x) → x [1]
add(s(x), y) → s(add(x, y)) [1]
p(0) → 0 [1]
p(s(x)) → x [1]

The TRS has the following type information:
cond1 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
true :: true:false
cond2 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
gr :: 0:s → 0:s → true:false
0 :: 0:s
add :: 0:s → 0:s → 0:s
p :: 0:s → 0:s
false :: true:false
cond3 :: true:false → 0:s → 0:s → 0:s → cond1:cond2:cond3
s :: 0:s → 0:s
const :: cond1:cond2:cond3

Rewrite Strategy: INNERMOST

(9) CpxTypedWeightedTrsToRntsProof (UPPER BOUND(ID) transformation)

Transformed the TRS into an over-approximating RNTS by (improved) Size Abstraction.
The constant constructors are abstracted as follows:

true => 1
0 => 0
false => 0
const => 0

(10) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ x :|: x >= 0, z'' = x, z' = 0
add(z', z'') -{ 1 }→ 1 + add(x, y) :|: z' = 1 + x, z'' = y, x >= 0, y >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(y, z), 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(x'', y), z), x'', y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + x'', x'' >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(y, z), 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z), 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + x3, z), 0, x3, z) :|: z'' = 0, z >= 0, z2 = z, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(x2, 0), z), 1 + x2, 0, z) :|: z1 = 0, z >= 0, z2 = z, z'' = 1 + x2, z' = 1, x2 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(x2, 1 + x4), z), 1 + x2, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z'' = 1 + x2, z1 = 1 + x4, z' = 1, x2 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(1 + add(x5, y), z), 1 + x5, y, z) :|: z1 = y, x5 >= 0, z >= 0, z2 = z, y >= 0, z'' = 1 + x5, z' = 0
gr(z', z'') -{ 1 }→ gr(x, y) :|: z' = 1 + x, x >= 0, y >= 0, z'' = 1 + y
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' = 1 + x, x >= 0
gr(z', z'') -{ 1 }→ 0 :|: x >= 0, z'' = x, z' = 0
p(z') -{ 1 }→ x :|: z' = 1 + x, x >= 0
p(z') -{ 1 }→ 0 :|: z' = 0

(11) SimplificationProof (BOTH BOUNDS(ID, ID) transformation)

Simplified the RNTS by moving equalities from the constraints into the right-hand sides.

(12) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 }→ 1 + add(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, z1), z2), z'' - 1, z1, z2) :|: z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(1 + add(z'' - 1, z1), z2), 1 + (z'' - 1), z1, z2) :|: z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 0), z2), 1 + (z'' - 1), 0, z2) :|: z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 1 + (z1 - 1)), z2), 1 + (z'' - 1), z1 - 1, z2) :|: z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

(13) CpxRntsAnalysisOrderProof (BOTH BOUNDS(ID, ID) transformation)

Found the following analysis order by SCC decomposition:

{ add }
{ p }
{ gr }
{ cond1, cond2, cond3 }

(14) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 }→ 1 + add(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, z1), z2), z'' - 1, z1, z2) :|: z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(1 + add(z'' - 1, z1), z2), 1 + (z'' - 1), z1, z2) :|: z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 0), z2), 1 + (z'' - 1), 0, z2) :|: z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 1 + (z1 - 1)), z2), 1 + (z'' - 1), z1 - 1, z2) :|: z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {add}, {p}, {gr}, {cond1,cond2,cond3}

(15) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: add
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z' + z''

(16) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 }→ 1 + add(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, z1), z2), z'' - 1, z1, z2) :|: z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(1 + add(z'' - 1, z1), z2), 1 + (z'' - 1), z1, z2) :|: z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 0), z2), 1 + (z'' - 1), 0, z2) :|: z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 1 + (z1 - 1)), z2), 1 + (z'' - 1), z1 - 1, z2) :|: z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {add}, {p}, {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: ?, size: O(n1) [z' + z'']

(17) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: add
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z'

(18) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 }→ 1 + add(z' - 1, z'') :|: z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, z1), z2), z'' - 1, z1, z2) :|: z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(1 + add(z'' - 1, z1), z2), 1 + (z'' - 1), z1, z2) :|: z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 0), z2), 1 + (z'' - 1), 0, z2) :|: z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + add(z'' - 1, 1 + (z1 - 1)), z2), 1 + (z'' - 1), z1 - 1, z2) :|: z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {p}, {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']

(19) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(20) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s, z2), z'' - 1, z1, z2) :|: s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s', z2), 1 + (z'' - 1), 0, z2) :|: s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s'', z2), 1 + (z'' - 1), z1 - 1, z2) :|: s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 + z'' }→ cond1(gr(1 + s1, z2), 1 + (z'' - 1), z1, z2) :|: s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {p}, {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']

(21) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using KoAT for: p
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: z'

(22) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s, z2), z'' - 1, z1, z2) :|: s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s', z2), 1 + (z'' - 1), 0, z2) :|: s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s'', z2), 1 + (z'' - 1), z1 - 1, z2) :|: s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 + z'' }→ cond1(gr(1 + s1, z2), 1 + (z'' - 1), z1, z2) :|: s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {p}, {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: ?, size: O(n1) [z']

(23) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: p
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(24) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s, z2), z'' - 1, z1, z2) :|: s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s', z2), 1 + (z'' - 1), 0, z2) :|: s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s'', z2), 1 + (z'' - 1), z1 - 1, z2) :|: s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 + z'' }→ cond1(gr(1 + s1, z2), 1 + (z'' - 1), z1, z2) :|: s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']

(25) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(26) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s, z2), z'' - 1, z1, z2) :|: s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s', z2), 1 + (z'' - 1), 0, z2) :|: s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s'', z2), 1 + (z'' - 1), z1 - 1, z2) :|: s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 + z'' }→ cond1(gr(1 + s1, z2), 1 + (z'' - 1), z1, z2) :|: s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']

(27) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: gr
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 1

(28) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s, z2), z'' - 1, z1, z2) :|: s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s', z2), 1 + (z'' - 1), 0, z2) :|: s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s'', z2), 1 + (z'' - 1), z1 - 1, z2) :|: s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 + z'' }→ cond1(gr(1 + s1, z2), 1 + (z'' - 1), z1, z2) :|: s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {gr}, {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: ?, size: O(1) [1]

(29) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using PUBS for: gr
after applying outer abstraction to obtain an ITS,
resulting in: O(n1) with polynomial bound: 1 + z''

(30) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 3 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s, z2), z'' - 1, z1, z2) :|: s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 }→ cond1(gr(z1, z2), 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(0, z2), 0, 0, z2) :|: z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s', z2), 1 + (z'' - 1), 0, z2) :|: s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' }→ cond1(gr(1 + s'', z2), 1 + (z'' - 1), z1 - 1, z2) :|: s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 2 + z'' }→ cond1(gr(1 + s1, z2), 1 + (z'' - 1), z1, z2) :|: s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (z1 - 1), z2), 0, z1 - 1, z2) :|: z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
gr(z', z'') -{ 1 }→ gr(z' - 1, z'' - 1) :|: z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]

(31) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(32) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s3, 0, z1, z2) :|: s3 >= 0, s3 <= 1, z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s4, z'' - 1, z1, z2) :|: s4 >= 0, s4 <= 1, s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' + z2 }→ cond1(s10, 1 + (z'' - 1), z1, z2) :|: s10 >= 0, s10 <= 1, s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s5, 0, 0, z2) :|: s5 >= 0, s5 <= 1, z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s6, 0, z1 - 1, z2) :|: s6 >= 0, s6 <= 1, z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s7, 1 + (z'' - 1), 0, z2) :|: s7 >= 0, s7 <= 1, s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s8, 1 + (z'' - 1), z1 - 1, z2) :|: s8 >= 0, s8 <= 1, s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z2 }→ cond1(s9, 0, z1, z2) :|: s9 >= 0, s9 <= 1, z'' = 0, z2 >= 0, z1 >= 0, z' = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]

(33) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: cond1
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 0

Computed SIZE bound using CoFloCo for: cond2
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 0

Computed SIZE bound using CoFloCo for: cond3
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 0

(34) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s3, 0, z1, z2) :|: s3 >= 0, s3 <= 1, z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s4, z'' - 1, z1, z2) :|: s4 >= 0, s4 <= 1, s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' + z2 }→ cond1(s10, 1 + (z'' - 1), z1, z2) :|: s10 >= 0, s10 <= 1, s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s5, 0, 0, z2) :|: s5 >= 0, s5 <= 1, z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s6, 0, z1 - 1, z2) :|: s6 >= 0, s6 <= 1, z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s7, 1 + (z'' - 1), 0, z2) :|: s7 >= 0, s7 <= 1, s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s8, 1 + (z'' - 1), z1 - 1, z2) :|: s8 >= 0, s8 <= 1, s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z2 }→ cond1(s9, 0, z1, z2) :|: s9 >= 0, s9 <= 1, z'' = 0, z2 >= 0, z1 >= 0, z' = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]
cond1: runtime: ?, size: O(1) [0]
cond2: runtime: ?, size: O(1) [0]
cond3: runtime: ?, size: O(1) [0]

(35) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using CoFloCo for: cond1
after applying outer abstraction to obtain an ITS,
resulting in: INF with polynomial bound: ?

(36) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + (z'' - 1), z1, z2) :|: z2 >= 0, z'' - 1 >= 0, z1 >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, z1, z2) :|: z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, z'', 1 + (z1 - 1), z2) :|: z1 - 1 >= 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, z'', 0, z2) :|: z1 = 0, z2 >= 0, z'' >= 0, z' = 0
cond2(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s3, 0, z1, z2) :|: s3 >= 0, s3 <= 1, z'' = 0, z2 >= 0, z1 >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s4, z'' - 1, z1, z2) :|: s4 >= 0, s4 <= 1, s >= 0, s <= 1 * (z'' - 1) + 1 * z1, z2 >= 0, z1 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z'' + z2 }→ cond1(s10, 1 + (z'' - 1), z1, z2) :|: s10 >= 0, s10 <= 1, s1 >= 0, s1 <= 1 * (z'' - 1) + 1 * z1, z'' - 1 >= 0, z2 >= 0, z1 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s5, 0, 0, z2) :|: s5 >= 0, s5 <= 1, z'' = 0, z1 = 0, z2 >= 0, z' = 1
cond3(z', z'', z1, z2) -{ 4 + z2 }→ cond1(s6, 0, z1 - 1, z2) :|: s6 >= 0, s6 <= 1, z'' = 0, z2 >= 0, z' = 1, z1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s7, 1 + (z'' - 1), 0, z2) :|: s7 >= 0, s7 <= 1, s' >= 0, s' <= 1 * (z'' - 1) + 1 * 0, z1 = 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z'' + z2 }→ cond1(s8, 1 + (z'' - 1), z1 - 1, z2) :|: s8 >= 0, s8 <= 1, s'' >= 0, s'' <= 1 * (z'' - 1) + 1 * (1 + (z1 - 1)), z1 - 1 >= 0, z2 >= 0, z' = 1, z'' - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 + z2 }→ cond1(s9, 0, z1, z2) :|: s9 >= 0, s9 <= 1, z'' = 0, z2 >= 0, z1 >= 0, z' = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]
cond1: runtime: INF, size: O(1) [0]
cond2: runtime: ?, size: O(1) [0]
cond3: runtime: ?, size: O(1) [0]

(37) RetryTechniqueProof (BOTH BOUNDS(ID, ID) transformation)

Performed narrowing of the following TRS rules:

cond3(true, 0, s(x3), z) → cond1(gr(s(x3), z), 0, x3, z) [3]
cond1(true, s(x'), y, z) → cond2(true, s(x'), y, z) [2]
cond2(false, x, 0, z) → cond3(false, x, 0, z) [2]
cond3(true, s(x2), s(x4), z) → cond1(gr(s(add(x2, s(x4))), z), s(x2), x4, z) [3]
cond2(true, 0, y, z) → cond1(gr(y, z), 0, y, z) [3]
cond2(false, x, s(x1), z) → cond3(true, x, s(x1), z) [2]
cond3(false, 0, y, z) → cond1(gr(y, z), 0, y, z) [2]
cond3(true, s(x2), 0, z) → cond1(gr(s(add(x2, 0)), z), s(x2), 0, z) [3]
cond3(false, s(x5), y, z) → cond1(gr(s(add(x5, y)), z), s(x5), y, z) [2]
cond1(true, 0, y, z) → cond2(false, 0, y, z) [2]
cond2(true, s(x''), y, z) → cond1(gr(s(add(x'', y)), z), x'', y, z) [3]
cond3(true, 0, 0, z) → cond1(gr(0, z), 0, 0, z) [3]

And obtained the following new TRS rules:

cond3(true, 0, s(x3), 0) → cond1(true, 0, x3, 0) [4]
cond3(true, 0, s(x3), s(y')) → cond1(gr(x3, y'), 0, x3, s(y')) [4]
cond1(true, s(x'), y, z) → cond2(true, s(x'), y, z) [2]
cond2(false, x, 0, z) → cond3(false, x, 0, z) [2]
cond3(true, s(0), s(x4), z) → cond1(gr(s(s(x4)), z), s(0), x4, z) [4]
cond3(true, s(s(x6)), s(x4), z) → cond1(gr(s(s(add(x6, s(x4)))), z), s(s(x6)), x4, z) [4]
cond2(true, 0, 0, z) → cond1(false, 0, 0, z) [4]
cond2(true, 0, s(x7), 0) → cond1(true, 0, s(x7), 0) [4]
cond2(true, 0, s(x8), s(y'')) → cond1(gr(x8, y''), 0, s(x8), s(y'')) [4]
cond2(false, x, s(x1), z) → cond3(true, x, s(x1), z) [2]
cond3(false, 0, 0, z) → cond1(false, 0, 0, z) [3]
cond3(false, 0, s(x9), 0) → cond1(true, 0, s(x9), 0) [3]
cond3(false, 0, s(x10), s(y1)) → cond1(gr(x10, y1), 0, s(x10), s(y1)) [3]
cond3(true, s(0), 0, z) → cond1(gr(s(0), z), s(0), 0, z) [4]
cond3(true, s(s(x11)), 0, z) → cond1(gr(s(s(add(x11, 0))), z), s(s(x11)), 0, z) [4]
cond3(false, s(0), y, z) → cond1(gr(s(y), z), s(0), y, z) [3]
cond3(false, s(s(x12)), y, z) → cond1(gr(s(s(add(x12, y))), z), s(s(x12)), y, z) [3]
cond1(true, 0, y, z) → cond2(false, 0, y, z) [2]
cond2(true, s(0), y, z) → cond1(gr(s(y), z), 0, y, z) [4]
cond2(true, s(s(x13)), y, z) → cond1(gr(s(s(add(x13, y))), z), s(x13), y, z) [4]
cond3(true, 0, 0, z) → cond1(false, 0, 0, z) [4]

Which were then size abstracted to RNTS rules to simplify the current SCC:

cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, x3, 0) :|: z'' = 0, z2 = 0, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(x3, y'), 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + x4), z), 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + add(x6, 1 + x4)), z), 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x7, 0) :|: z'' = 0, x7 >= 0, z2 = 0, z1 = 1 + x7, z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(gr(x8, y''), 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(1, 0, 1 + x9, 0) :|: z'' = 0, z2 = 0, z1 = 1 + x9, x9 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(x10, y1), 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + 0, z), 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + add(x11, 0)), z), 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11)
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + y, z), 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (1 + add(x12, y)), z), 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + y, z), 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + add(x13, y)), z), 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1

(38) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(gr(x8, y''), 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + y, z), 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + add(x13, y)), z), 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x7, 0) :|: z'' = 0, x7 >= 0, z2 = 0, z1 = 1 + x7, z' = 1
cond2(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(x10, y1), 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(x3, y'), 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + y, z), 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + 0, z), 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + x4), z), 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + add(x11, 0)), z), 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11)
cond3(z', z'', z1, z2) -{ 3 }→ cond1(gr(1 + (1 + add(x12, y)), z), 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(gr(1 + (1 + add(x6, 1 + x4)), z), 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, x3, 0) :|: z'' = 0, z2 = 0, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(1, 0, 1 + x9, 0) :|: z'' = 0, z2 = 0, z1 = 1 + x9, x9 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]

(39) InliningProof (UPPER BOUND(ID) transformation)

Inlined the following terminating rules on right-hand sides where appropriate:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0

(40) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond2(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 + y'' }→ cond1(s11, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, s11 >= 0, s11 <= 1, x8 - 1 >= 0, y'' - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, z = 0, 1 + y - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x7, 0) :|: z'' = 0, x7 >= 0, z2 = 0, z1 = 1 + x7, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, y'' = 0, x8 - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, x8 = 0
cond3(z', z'', z1, z2) -{ 5 + y' }→ cond1(s11, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, s11 >= 0, s11 <= 1, x3 - 1 >= 0, y' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + y1 }→ cond1(s11, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, s11 >= 0, s11 <= 1, x10 - 1 >= 0, y1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + (1 + x4) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z }→ cond1(s11, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + 0 - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, s11 >= 0, s11 <= 1, 1 + (1 + 0) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + x4)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, x3, 0) :|: z'' = 0, z2 = 0, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, y' = 0, x3 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, y1 = 0, x10 - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(1, 0, 1 + x9, 0) :|: z'' = 0, z2 = 0, z1 = 1 + x9, x9 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, z = 0, 1 + (1 + x4) - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, z = 0, 1 + y - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, z = 0, 1 + 0 - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, z = 0, 1 + (1 + 0) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, z = 0, 1 + (1 + (1 + x4)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, x3 = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, x10 = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]

(41) ResultPropagationProof (UPPER BOUND(ID) transformation)

Applied inner abstraction using the recently inferred runtime/size bounds where possible.

(42) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond2(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 + y'' }→ cond1(s11, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, s11 >= 0, s11 <= 1, x8 - 1 >= 0, y'' - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, z = 0, 1 + y - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x7, 0) :|: z'' = 0, x7 >= 0, z2 = 0, z1 = 1 + x7, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, y'' = 0, x8 - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, x8 = 0
cond3(z', z'', z1, z2) -{ 5 + y' }→ cond1(s11, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, s11 >= 0, s11 <= 1, x3 - 1 >= 0, y' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + y1 }→ cond1(s11, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, s11 >= 0, s11 <= 1, x10 - 1 >= 0, y1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + (1 + x4) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z }→ cond1(s11, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + 0 - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, s11 >= 0, s11 <= 1, 1 + (1 + 0) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + x4)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, x3, 0) :|: z'' = 0, z2 = 0, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, y' = 0, x3 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, y1 = 0, x10 - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(1, 0, 1 + x9, 0) :|: z'' = 0, z2 = 0, z1 = 1 + x9, x9 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, z = 0, 1 + (1 + x4) - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, z = 0, 1 + y - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, z = 0, 1 + 0 - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, z = 0, 1 + (1 + 0) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, z = 0, 1 + (1 + (1 + x4)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, x3 = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, x10 = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]

(43) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed SIZE bound using CoFloCo for: cond1
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 0

Computed SIZE bound using CoFloCo for: cond2
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 0

Computed SIZE bound using CoFloCo for: cond3
after applying outer abstraction to obtain an ITS,
resulting in: O(1) with polynomial bound: 0

(44) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond2(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 + y'' }→ cond1(s11, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, s11 >= 0, s11 <= 1, x8 - 1 >= 0, y'' - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, z = 0, 1 + y - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x7, 0) :|: z'' = 0, x7 >= 0, z2 = 0, z1 = 1 + x7, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, y'' = 0, x8 - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, x8 = 0
cond3(z', z'', z1, z2) -{ 5 + y' }→ cond1(s11, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, s11 >= 0, s11 <= 1, x3 - 1 >= 0, y' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + y1 }→ cond1(s11, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, s11 >= 0, s11 <= 1, x10 - 1 >= 0, y1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + (1 + x4) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z }→ cond1(s11, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + 0 - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, s11 >= 0, s11 <= 1, 1 + (1 + 0) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + x4)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, x3, 0) :|: z'' = 0, z2 = 0, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, y' = 0, x3 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, y1 = 0, x10 - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(1, 0, 1 + x9, 0) :|: z'' = 0, z2 = 0, z1 = 1 + x9, x9 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, z = 0, 1 + (1 + x4) - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, z = 0, 1 + y - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, z = 0, 1 + 0 - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, z = 0, 1 + (1 + 0) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, z = 0, 1 + (1 + (1 + x4)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, x3 = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, x10 = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed: {cond1,cond2,cond3}
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]
cond1: runtime: ?, size: O(1) [0]
cond2: runtime: ?, size: O(1) [0]
cond3: runtime: ?, size: O(1) [0]

(45) IntTrsBoundProof (UPPER BOUND(ID) transformation)


Computed RUNTIME bound using KoAT for: cond1
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 35 + 280·z' + 2·z'·z'' + 22·z'·z2 + 560·z'' + 4·z''·z1 + 44·z''·z2 + 4·z''2 + 560·z1 + 44·z1·z2 + 3·z2

Computed RUNTIME bound using PUBS for: cond2
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 3213 + 599·z'' + 4·z''·z1 + 44·z''·z2 + 4·z''2 + 648·z1 + 44·z1·z2 + 246·z2

Computed RUNTIME bound using PUBS for: cond3
after applying outer abstraction to obtain an ITS,
resulting in: O(n2) with polynomial bound: 3211 + 599·z'' + 4·z''·z1 + 44·z''·z2 + 4·z''2 + 648·z1 + 44·z1·z2 + 246·z2

(46) Obligation:

Complexity RNTS consisting of the following rules:

add(z', z'') -{ 1 }→ z'' :|: z'' >= 0, z' = 0
add(z', z'') -{ 1 + z' }→ 1 + s2 :|: s2 >= 0, s2 <= 1 * (z' - 1) + 1 * z'', z' - 1 >= 0, z'' >= 0
cond1(z', z'', z1, z2) -{ 2 }→ cond2(1, 1 + x', y, z) :|: z1 = y, z >= 0, z'' = 1 + x', z2 = z, x' >= 0, y >= 0, z' = 1
cond1(z', z'', z1, z2) -{ 2 }→ cond2(0, 0, y, z) :|: z'' = 0, z1 = y, z >= 0, z2 = z, y >= 0, z' = 1
cond2(z', z'', z1, z2) -{ 2 }→ cond3(1, x, 1 + x1, z) :|: x1 >= 0, z >= 0, z2 = z, x >= 0, z'' = x, z1 = 1 + x1, z' = 0
cond2(z', z'', z1, z2) -{ 2 }→ cond3(0, x, 0, z) :|: z1 = 0, z >= 0, z2 = z, x >= 0, z'' = x, z' = 0
cond2(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 + y'' }→ cond1(s11, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, s11 >= 0, s11 <= 1, x8 - 1 >= 0, y'' - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 + z }→ cond1(s11, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z' = 1, z'' = 1 + 0, z = 0, 1 + y - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x7, 0) :|: z'' = 0, x7 >= 0, z2 = 0, z1 = 1 + x7, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, y'' = 0, x8 - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, x13 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond2(z', z'', z1, z2) -{ 6 + x13 }→ cond1(1, 1 + x13, y, z) :|: x13 >= 0, z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + (1 + x13), z' = 1, s2 >= 0, s2 <= 1 * (x13 - 1) + 1 * y, x13 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond2(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond2(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, 1 + x8, 1 + y'') :|: z'' = 0, z2 = 1 + y'', x8 >= 0, z1 = 1 + x8, y'' >= 0, z' = 1, x8 = 0
cond3(z', z'', z1, z2) -{ 5 + y' }→ cond1(s11, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, s11 >= 0, s11 <= 1, x3 - 1 >= 0, y' - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + y1 }→ cond1(s11, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, s11 >= 0, s11 <= 1, x10 - 1 >= 0, y1 - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + (1 + x4) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 + z }→ cond1(s11, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, s11 >= 0, s11 <= 1, 1 + y - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, s11 >= 0, s11 <= 1, 1 + 0 - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, s11 >= 0, s11 <= 1, 1 + (1 + 0) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 + z }→ cond1(s11, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, s11 >= 0, s11 <= 1, 1 + (1 + y) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 + z }→ cond1(s11, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + x4)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 + z }→ cond1(s11, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, s11 >= 0, s11 <= 1, 1 + (1 + (1 + s2)) - 1 >= 0, z - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, x3, 0) :|: z'' = 0, z2 = 0, z' = 1, z1 = 1 + x3, x3 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, y' = 0, x3 - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, y1 = 0, x10 - 1 >= 0
cond3(z', z'', z1, z2) -{ 3 }→ cond1(1, 0, 1 + x9, 0) :|: z'' = 0, z2 = 0, z1 = 1 + x9, x9 >= 0, z' = 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, x4, z) :|: x4 >= 0, z >= 0, z2 = z, z1 = 1 + x4, z' = 1, z'' = 1 + 0, z = 0, 1 + (1 + x4) - 1 >= 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(1, 1 + 0, y, z) :|: z1 = y, z >= 0, z2 = z, y >= 0, z'' = 1 + 0, z' = 0, z = 0, 1 + y - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + 0, 0, z) :|: z1 = 0, z >= 0, z2 = z, z' = 1, z'' = 1 + 0, z = 0, 1 + 0 - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), 0 >= 0, x11 = 0, z = 0, 1 + (1 + 0) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x11 }→ cond1(1, 1 + (1 + x11), 0, z) :|: z1 = 0, z >= 0, z2 = z, x11 >= 0, z' = 1, z'' = 1 + (1 + x11), s2 >= 0, s2 <= 1 * (x11 - 1) + 1 * 0, x11 - 1 >= 0, 0 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, x12 = 0, z = 0, 1 + (1 + y) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 + x12 }→ cond1(1, 1 + (1 + x12), y, z) :|: z1 = y, z >= 0, z'' = 1 + (1 + x12), z2 = z, y >= 0, x12 >= 0, z' = 0, s2 >= 0, s2 <= 1 * (x12 - 1) + 1 * y, x12 - 1 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, 1 + x4 >= 0, x6 = 0, z = 0, 1 + (1 + (1 + x4)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 6 + x6 }→ cond1(1, 1 + (1 + x6), x4, z) :|: x4 >= 0, z >= 0, z'' = 1 + (1 + x6), z2 = z, x6 >= 0, z1 = 1 + x4, z' = 1, s2 >= 0, s2 <= 1 * (x6 - 1) + 1 * (1 + x4), x6 - 1 >= 0, 1 + x4 >= 0, z = 0, 1 + (1 + (1 + s2)) - 1 >= 0
cond3(z', z'', z1, z2) -{ 5 }→ cond1(0, 0, x3, 1 + y') :|: z'' = 0, y' >= 0, z2 = 1 + y', z' = 1, z1 = 1 + x3, x3 >= 0, x3 = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 1
cond3(z', z'', z1, z2) -{ 3 }→ cond1(0, 0, 0, z) :|: z'' = 0, z1 = 0, z >= 0, z2 = z, z' = 0
cond3(z', z'', z1, z2) -{ 4 }→ cond1(0, 0, 1 + x10, 1 + y1) :|: z'' = 0, y1 >= 0, z2 = 1 + y1, z1 = 1 + x10, x10 >= 0, z' = 0, x10 = 0
gr(z', z'') -{ 1 + z'' }→ s11 :|: s11 >= 0, s11 <= 1, z' - 1 >= 0, z'' - 1 >= 0
gr(z', z'') -{ 1 }→ 1 :|: z'' = 0, z' - 1 >= 0
gr(z', z'') -{ 1 }→ 0 :|: z'' >= 0, z' = 0
p(z') -{ 1 }→ 0 :|: z' = 0
p(z') -{ 1 }→ z' - 1 :|: z' - 1 >= 0

Function symbols to be analyzed:
Previous analysis results are:
add: runtime: O(n1) [1 + z'], size: O(n1) [z' + z'']
p: runtime: O(1) [1], size: O(n1) [z']
gr: runtime: O(n1) [1 + z''], size: O(1) [1]
cond1: runtime: O(n2) [35 + 280·z' + 2·z'·z'' + 22·z'·z2 + 560·z'' + 4·z''·z1 + 44·z''·z2 + 4·z''2 + 560·z1 + 44·z1·z2 + 3·z2], size: O(1) [0]
cond2: runtime: O(n2) [3213 + 599·z'' + 4·z''·z1 + 44·z''·z2 + 4·z''2 + 648·z1 + 44·z1·z2 + 246·z2], size: O(1) [0]
cond3: runtime: O(n2) [3211 + 599·z'' + 4·z''·z1 + 44·z''·z2 + 4·z''2 + 648·z1 + 44·z1·z2 + 246·z2], size: O(1) [0]

(47) FinalProof (EQUIVALENT transformation)

Computed overall runtime complexity

(48) BOUNDS(1, n^2)